Simulation of a Discharge Produced Plasma (DPP) for Blue-X (6.x nm) EUV radiation

David Reisman, Kosuke Saito, Wolfram Neff

Energetiq Technology, Inc.

ENERGETIQ A**HAMAMATSU** Company

INTRODUCTION

SPIE.

The EQ-10 Electrodeless Z-pinch[™] source uses Xenon plasma to produce 13.5 nm (±1% BW) radiation. The source is used for metrology, mask inspection, and resist development. In this talk we will present modeling of the EQ-10 Z-pinch using the Trac-II radiation magnetohydrodynamic (RMHD) code. Specifically, we use RMHD calculations to explore development of the Electrodeless Zpinch as a source of Blue-X (6.x nm) radiation. We revisit previous experimental attempts at obtaining Blue-X EUV radiation with neon gas. Having established a baseline of performance on our present Zpinch system, we use RMHD calculations to scale to higher EUV power outputs of potential interest to the EUV community.

METHODS

Calculations were performed with TRAC-II, a 2D azimuthally symmetric RMHD code. Shown are 1D/2D results for Xenon.

RESULTS

Perform calculations with a "scaled" EQ-10 for increased pulse

energy – circuit energy $E_c = \frac{1}{2}CV^2 = 6.2$ J. Increase mass of

plasma (4-5x) to obtain higher density conditions.

Neon results were reconsidered using the FLYCHK collisional radiative code [3]. Using experimental parameters, the EUV yield was calculated [4].

Plasma density can be increased to obtain optimal conditions for 6.7 nm EUV

CONCLUSIONS

. The Blue-X EUV results for neon on the EQ-10 are

- reasonable based on FLYCHK estimates
- 2. Pinch density must be increased 3-4 times in order to obtain results in 1 W/2 π range
- 3. This could be achieved with a more powerful driver in the range of 6 J/pulse electrical energy

Ultimately these results will be refined by experiment and more accurate calculations using an inline CR treatment of EOS and radiation in a RMHD code. These efforts are currently underway with the goal of reaching useful power levels for the EUV community.

REFERENCES

 S. F. Horne *et al.*, "Application of a high-brightness electrodeless Zpinch EUV source for metrology, inspection, and resist development," in Emerging Lithographic Technologies X, J.

Typical current waveform for a Xenon pinch on the EQ-10.

Also shown is the derivative of the photodiode signal.

FLYCHK shows previous results (70 mW/2π)are

reasonable considering density of plasma. Need to

attain higher final densities for >1 W /2 π

Proceedings of the SPIE, Volume 6151, pp. 201-210 (2006).
2. S.F. Horne *et al.*, "The Energetiq EQ-10 EUV source for metrology -Review of recent data" [Poster presentation], 2013 International Workshop on EUV and Soft X-Ray Sources (2013). <u>https://www.euvlitho.com/2013/S29.pdf</u>.

3. H.-K. Chung, M. Chen, W. Morgan, Y. Ralchenko, and R. Lee, High Energy Density Phys. 1, 3 (2005).

4. F. Conti et al., Journal of Applied Physics 130, 023301 (2021).